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Abstract. We prove numerically for the first time that the lower part of the spectrum of the
transfer matrix of the quasi-one-dimensional disordered system is strongly correlated in the
neighbourhood of the critical point of the metal–insulator transition. In particular, the disorder
and the system size dependence of the spectrum is governed only by one parameter which we
identify with the scaling parameter of MacKinnon and Kramer. The strong correlation of the
spectrum supports the idea of the universality of the random-matrix-like theory of the metal–
insulator transition and provides us with a new way of calculation of the critical parameters of
this transition.

In spite of the great success in the theoretical and numerical studies of the disorder-
induced metal–insulator transition (MIT), no general theory of this phenomena has yet
been formulated. The most objective attempt to describe MIT in a unified manner is based
on the analysis of the spectrum of the transfer matrix. This treatment is motivated by the
successful application of the random matrix theory (RMT) [1] to the description of the
transport properties of the disorderedmetallic samples [2–5]. For the transfer matrix,T ,
we introduce ‘extended’ Lyapunov exponents,νi , through eigenvalues,3i , of the matrix
T †T asνi = log3i [8]. Then, observed linearity of the spectrum ofνi ∝ i in the metallic
regime, inspired a search of their distribution in a form

P(ν1, ν2, . . . , νN) = exp−βH(ν1, ν2, . . . , νN) (1)

with the Hamiltonian

H =
∑
i

V (νi)+
∑
i<j

u(νi, νj ). (2)

Here, N = Ld−1 is a number of channels in the quasi-one-dimensional (Q1D) system
Ld−1× Lz andβ = 1, 2 or 4 depending on the symmetry of the problem [1, 3].

Distribution (1) has been approved by applying the local and global maximum entropy
ansatz [6]. Although this analysis was addressed only to systems with very small disorder
(metallic limit), there is evidence [7–9] that the RMT-like distribution,P(z), could be
relevant also at higher values of disorder, including the critical point of MIT and even
the localized regime. If this hypothesis is true, then the spectrum of LE should be strongly
correlated in the sense that thei-dependence of theith LE νi should follow a simple formula
similar to the linear relationνi ∝ i in the metallic limit. The transition from the metallic
into the localized state would then be caused by the appropriate change of the one-particle
potential,V (ν), and/or of the interacting termu(νi, νj ). The form of these potentials has
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to guarantee the most important features of the spectrum of LE, namely (i) the linearity of
the spectrum in the metallic regime and (ii) the opening of the gap at the critical point.

In the metallic regime, the one-particle potentialV (ν) is always quadratic. Recently
another potentialV (ν) has been proposed [10] for which the model (1) isexactly solvable
and for which the spectrum of LE has the above-mentioned desired properties. In a previous
work [9] we have taken another way. We have analysed the numerical data for the Q1D
Anderson model and proposed the form of potentialV (ν) which reproduces the spectrum
of LE. In the Q1D systems the interacting potential always has a simple universal form

u(νi, νj ) = 1
2 log | coshνi − coshνj |

independent from the regime system in [9, 11]. Consequently, it is the one-particle potential
which is responsible for the transition from metallic into the localized regime. Although
the model we have obtained is neither explicitly derived nor exactly solvable, it reproduces
correctly the disorder and dimension dependence of the spectra in all three regimes (metallic,
critical, localized) and was even able to explain the quantitative differences between spectra
of Q1D and cubic systems reported in [8].

The important consequence of the universal RMT-like theory of MIT is the strong
correlation of the spectrum of LE. Up to now, there is no direct evidence that the spectrum
of LE close to the critical point is really strongly correlated. The most successful numerical
method of analysis of MIT, the finite-size scaling theory of localization [12], deals only
with the smallest positive LEν1. The first attempt to analyse the scaling behaviour of
higher LE was made in [13]. Evidence that at least the lower part of the spectrum of LE
at the critical point could be described by simple formula which contains no more than
one parameter (the value of the first LEz1) were presented in [8] for three-dimensional
samples and in [14, 15, 9] for four-dimensional systems. The aim of this paper is, therefore,
the detailed study of the spectrum of the Q1D disordered system. As a model, we use the
Anderson model, which undergoes transition from the metallic state into the localized one
when the strength of the disorder,W , represented by random energies on the sites of the
lattice, exceeds critical valueWc ≈ 16.5.

In studies of the spectrum of LE, we use numerical data for the Q1D Anderson model
L2×Lz (Lz � L), collected by Henneke [13] for 86 L 6 14 and completed by ourselves
for L = 16. In the limitLz � L, all νi are proportional to the system lengthLz and so
νi � 1. This simplifies the analysis of the spectrum ofν’s [9]. In what follows we consider
LE zi , defined as aszi = L

Lz
νi . They depend only onL and on the disorderW .

We concentrate on the lower part of the spectrum, in which the changes of the spectrum
are more visible and consider onlyzi with i 6 NLE. The choice of the number of LE and
its L-dependence ofNLE (NLE ∝ L) will be discussed below.

For any system sizeL we find that theNLE smallest Lyapunov exponents in the
neighbourhood of the critical point fulfil the simple formula (5). Moreover, this relation is
determined by only one parameter, which we identify with the scaling parameter,ξ(W). The
latter was introduced by MacKinnon and Kramer [12] in the scaling theory of localization,
where it defines the disorder and the system size dependence of the first LE:

z1 = f (ξ(W)/L).
The fact that the same scaling parameter determines the behaviour of not only the first LE,
but also of the higher ones, is of extreme importance for the formulation of the general
theory of MIT.

Figure 1 shows the typical spectra of LE at the critical pointWc = 16.5 and in the
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Figure 1. Spectrum of LEi versuszi for L = 16 andW = 16.5 (critical point) andW = 32
(insulator) together with corresponding fits (3).

localized regimeW = 32. The lower part of the spectrum can be fitted with quadratic fit

i − 1= a0+ a1zi + a2z
2
i (3)

with a1 = 0 at the critical point [8].
The choice of fit (3) has been inspired by the phenomenological description of MIT,

proposed recently in [9]: we conjectured that MIT is accompanied by the change of the
densityρ(z) = 〈∑i δ(z−zi)〉 of LE. In difference to the previous conjecture [9], we consider
here the more generalz-dependence ofρ(z):

ρ(z) = 2

z3
1c(W,L)

[z + a(W,L)]. (4)

From (4) we derive, by the method explained in [9], that the LEs of Q1D system fulfil the
relation

[zi + a(W,L)]2− [z1+ a(W,L)]2 = z3
1

2
c(W,L)(i − 1). (5)

Relation (5) is equivalent to (3) whena(W,L) = a1/(2a) and c(W,L) = 2/z3
1a2.

Comparison with (5) defines the mutual correlation of the parameter of the fit, namely

a0 = −(z2
1a2+ 2z1a1). (6)

Relation (5) assures the strong correlation of the spectrum of LE mention above: the
data for LE zi , completed for different system widths,L, and different disorders,W , in
all three regimes are determined by the value of the first LEz1 and the functionsa(W,L)
and c(W,L). In fact we will show that the correlation is even stronger: the spectrum is
completely determined only by one parameter—the ratio of the scaling parameterξ(W) [12]
to the system widthL.
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Figure 2. The disorder dependence of (a) a(W,L) (b) c̃(W,L) for L = 8–14. Inset: quadratic
fits throughout the data.

According to formula (5), the most important change of the spectrum of LE is caused
by change of the sign ofa(W,L) at the critical point. As will be seen below (see figure 2)
a(W,L) is linear at the critical point:

a(W,L) ∝ W −Wc. (7)

Far from the critical pointa(W,L) behaves as∝ ±2L/ξ(W) where the sign+ (−)
correspond to the metallic (localized) regime, respectively [9]. Then the formula (5)
reproduces correctly the linearity of the spectrum in the metallic regime (a � 1) and
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explains the peculiarities of the spectrum in the localized regime.
Relation (7) is also supported by numerical evidence that the spectrum of LE at the

critical point fulfils the simple relation [8, 14, 9]

zi = z1

√
1+ z1/2(i − 1)

which coincides with (5) iff

a(Wc, L) = 0 (8)

and

c(Wc, L) = 1 (9)

for each system sizeL.
First, we have calculated the quadratic fits (3) of the spectrum of LE for different values

of disorder 146 W 6 19 and foundfor each system size86 L 6 16 separatelythe critical
disorder,Wc, and the optimal number of LE,NLE, for which the relations (8) and (9) are
fulfilled with the best accuracy. Results are collected in table 1 and confirm the linear
growth of the optimal number of LE,NLE, with the system size. The estimated value of
critical disorder, 16.4 6 Wc 6 16.5, is in very good agreement with previously obtained
data [12, 16, 17, 19] The data in the fifth column of table 1 seem to support the relation
z1(Wc) = (2π)2/3 = 3.405. . ., which was predicted previously [9] from the comparison of
the spectra of LE for cubic and Q1D systems in themetallic regime.

Figure 2 presents the disorder dependence ofa(W,L) and c̃(W,L) = logc(W,L) for
different system widths,L, as were calculated from the quadratic fit (3). The uncertainty of
the data is rather large and is caused by the amplification of the numerical uncertainty of the
raw data for LE. To test the quality of the fit (3) we compare coefficienta0 obtained from
the fit procedure with that predicted by relation (6) we found that the relative deviation of
a0 from its ‘theoretical’ value (6) does not exceed 1− 2% (table 1). Another test consists
of the study of the difference1z = zi − zfit

i between the numerical datazi and valueszfit
i

obtained from (3) and its comparison with the inacuracyδz of LEs as was obtained from
numerical simulations [13]. In figure 3 we present the ratio1z/δz for three different values
of disorder. Results confirm that the difference between numerical data and data obtained
from the fit are smaller or of the order of the accuracy of the data itself.

Our results confirm an assumption that botha(W,L) and c̃(W,L) change the sign at
the critical point (see equations (8) and (9)). Moreover, all curves seem to have a tendency
to cross at the same point very close to the critical pointWc. This tendency is more visible,
when we use the quadratic fit through the data fora, c instead of data themselves. It indicates

Table 1. The values ofNLE, Wc and z1, found from the quadratic fit of (3). Data in the last
column shows how relation (6) is fulfilled at the critical point (a1 = 0).

L NLE Wc z1 z1/(2π)2/3 −z1
√
a2/a0

8 5 16.419 3.393 0.997 1.004
9 6 16.461 3.416 1.003 1.011

10 7 16.468 3.426 1.006 1.014
11 8 16.421 3.400 0.999 1.016
12 9 16.418 3.379 0.992 1.015
13 9 16.498 3.442 1.011 1.015
14 10 16.485 3.431 1.008 1.014
16 12 16.462 3.412 1.002 1.019
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Figure 3. The ratio1z/δz for W = 16 (circles),W = 16.5 (stars) andW = 17 (crosses) shows
that the difference1z between numerical and fitted values of LE is smaller or of the order of
the numerical accuracyδz of z’s. Inset: relative accuracyδz/z (in %) of the numerical data for
the first 10 LE (L = 14,W = 16.5) [13].

that functionsa(W,L), c̃(W,L) depend only on one parameter. It is then reasonable to
assume that

a(W,L) = a(ξ(W)/L) c̃(W,L) = c̃(ξ(W)/L). (10)

To prove this relation we plot (10) in figure 4 using the scaling parameterξ(W) calculated
for z1 in [13] to prove relations (10).

It would be, in principle, possible to use our data fora(W,L) and c̃(W,L) also
for calculation of the scaling parameterξ(W) and the critical exponentss and ν for the
conductance and for the localization length, respectively, in the same way as it was made
in the finite-size-scaling analysis on the basis of the data for the first LE. However, results
of such calculations are very sensitive to the accuracy of the input data. (The accuracy of
the LE used in our analysis, is given in the inset of figure 3 [13].) It is why, in figure 4,
we used the scaling parameter found from the studies of the first LEz1. We present here
only the estimation of the critical exponents based on the study of the scaling properties
of a(W,L). Following scaling arguments [18] we find thata(W,L) behaves close to the
critical point as

a(W,L) = A× (W −Wc)L
α (11)

with the exponentα−1 = s = ν. We fit our data fora(W,L) to formula (11) by the method
described in [17] and found

1.36 s, ν 6 1.9. (12)

It is probably impossible to improve this estimation with the presently available data for
LEs. Nevertheless, this result is consistent with the previous estimations = ν ≈ 1.5
[17, 13, 18, 19].
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Figure 4. Functions (a) a(W,L) and (b) c̃(W,L) as a function ofξ(W)/L with the scaling
parameterξ(W) found from the scaling analysis of the first Lyapunov exponent [13].

In conclusion, we have shown that the system size and disorder dependence of the most
relevant part of the spectrum of LE is controlled only by one parameter: the ratioξ(W)/L.
This indicates the possibility of generalizing the finite-size scaling theory of localization to
the higher LE. Although the present study is probably of little use in practical calculation
of the parameters of the transition, the proof of the simultaneous scaling of LE leads to a
deeper understanding of the scaling of localization: in the metallic limit, the identification
of ξ−1 with the conductance of the system requires implicitly that higher LEzi scale as the
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functionsξ(W)/L as it follows explicitly from (5). In the localized regime, the correlation
of LE given by relation (5) explains statistical properties of the LE and of the conductance
[9, 20].

Our results support the possibility of describing the distribution of LE in the forms
(1) and (2) in all three regimes. Their generalization to thed-dimensional system is
straightforward [9]. The most important question which remains to be solved is that of
the number of LE which has to be considered in the description of MIT. In difference to
the treatment of Muttalibet al [10], we considered here only a small part of the spectra
(the number of considered LE isNLE ∼ L). Although it would be alluring to generalize
our formulae for the whole spectrum (NLE = Ld−1), we did not succeed in doing so. On
the other hand, such generalization is probably of little practical importance since larger
LE surely play no role in transport and in processes connected with MIT. We believe that
present results will inspire the search of the general form of the distributionP(z) of LE.
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